
Investigation of the sum of series

from the general Term *

Leonhard Euler

§103 Let the general term corresponding to the index x of a certain series be
= y, so that y is a function of x. Further, let Sy be the sum or the summatory
term of the series expressing the aggregate of all terms from the first or
another fixed term up to y. Indeed, in the following we will compute the sum
of the series starting from the first term, whence, if x = 1, y will give the first
term and Sy will exhibit this first term y; but if one puts x = 0, the summatory
term Sy has to go over into zero, because there are no terms to be summed.
Therefore, the summatory term Sy will be a function of x vanishing for x = 0.

§104 If the general term y consists of several parts so that y = p+ q+ r + etc.,
then one can consider the series as conflated of several other series, whose
general terms are p, q, r etc. Hence, if the sums of these series are known, one
will also be able to assign the sum of the propounded series; for, it will be
the aggregate of all single series. Therefore, if y = p + q + r + etc., it will be
Sy = Sp + Sq + Sq + etc. Therefore, because above we exhibited the sums of
series, whose general terms are arbitrary positive powers of x with positive
integer coefficients, hence one will be able to find the summatory term of
any series, whose general term is axα + bxβ + cxγ + etc., while α, β, γ etc. are
positive integer numbers, or whose general term is a polynomial function of
x.

*Original title: “Investigatio summae serierum ex termino generali“, first published as part of
the book„Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum,
1755“, reprinted in Opera Omnia: Series 1, Volume 10, pp. 309 - 336, Eneström-Number E212,
translated by: Alexander Aycock for the „Euler-Kreis Mainz“
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§105 In this series whose general term or the term corresponding to the
exponent x is = y let the term preceding this one or the term corresponding
to the index x − 1 be = v; since v results from y, if one writes x − 1 instead of
x, it will be

v = y − dy
dx

+
ddy
2dx2 − d3y

6dx3 +
d4y

24dx4 − d5y
120dx5 + etc.

Therefore, if y was the general term of this series

1 2 3 4 · · · · · · x − 1 x

a + b + c + d + · · · + v + y

and the term corresponding to the index 0 of this series was = A, v, since it is
a function of x, will be the general term of this series

1 2 3 4 5 · · · · · · · x

A + a + b + c + d + · · · + v,

whence, if Sv denotes the sum of this series, it will be Sv = Sy − y + A.
Therefore, having put x = 0, since Sy = 0 and y = A, also Sv will vanish.

§106 Therefore, since

v = y − dy
dx

+
ddy
2dx2 − d3y

6dx3 + etc.,

by means of the results demonstrated before, it will be

Sv = Sy − S
dy
dx

+ S
ddy
2dx2 − S

d3y
6dx3 + S

d4y
24dx4 − etc.

and, because of Sv = Sy − y + A, it will be

y − A = S
dy
dx

− S
ddy
2dx2 + S

d3y
6dx3 − S

d4y
24dx4 + etc.

and hence one will have

S
dy
dx

= y − A + S
ddy
2dx2 − S

d3y
6dx3 + S

d4y
24dx4 − etc.

2



Therefore, if one knows the summatory terms of the series, whose general

terms are ddy
dx2 , d3y

dx3 , d4y
dx4 etc., from them one will obtain the summatory term of

the series, whose general term is dy
dx . The quantity A has to be of such a nature

that for x = 0 the summatory S dy
dx term vanishes, and using this condition, it is

determined more easily than if we would say that it is the term corresponding
to the index 0 in the series whose general term is = y.

§107 This ansatz is usually made to investigate the sums of the powers of
natural numbers. For, let y = xn+1; since

dy
dx

= (n + 1)xn,
ddy
2dx2 =

(n + 1)n
1 · 2

xn−1,
d3y

6dx3 =
(n + 1)n(n − 1)

1 · 2 · 3
xn−2,

d4y
24dx4 =

(n + 1)n(n − 1)(n − 2)
1 · 2 · 3 · 4

xn−3 etc.,

having substituted these values, it will be

(n + 1)Sxn = xn+1 − A +
(n + 1)n

1 · 2
Sxn−1 − (n + 1)n(n − 1)

1 · 2 · 3
Sxn−2 + etc.;

and if one divides by n + 1 on both sides, it will be

Sxn =
1

n + 1
xn+1 +

n
2

Sxn−1 − n(n − 1)
2 · 3

Sxn−2 +
n(n − 1)(n − 2)

2 · 3 · 4
Sxn−3 − etc.−Const.,

which constant has to be taken in such a way that for x = 0 the summatory
term vanishes. Therefore, using this formula, from the already known sums
of lower powers, whose general terms are xn−1, xn−2 etc., one will be able to
find the sum of the higher powers expressed by the general term xn.

§108 If in this expression n denotes a positive integer, the number of terms
will be finite. And hence the sum of infinitely many powers will be found
explicitly; for, if n = 0, it will be

Sx0 = x.

And having known this one, it will be possible to proceed to the sums of
higher powers; for, having put n = 1, it will be
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Sx1 =
1
2

x2 +
1
2

Sx0 =
1
2

x2 +
1
2

x;

if one further sets n = 2, this equation will result

Sx2 =
1
3

x3 + Sx − 1
3

Sx0 =
1
3

x3 +
1
2

x2 +
1
6

x,

moreover,

Sx3 =
1
4

x4 +
3
2

Sx2 − Sx +
1
4

Sx0 =
1
4

x4 +
1
2

x3 +
1
4

x2,

Sx4 =
1
5

x5 +
4
2

Sx3 − 4
2

Sx2 + Sx − 1
5

Sx0

or

Sx4 =
1
5

x5 +
1
2

x4 +
1
3

x3 − 1
30

x.

And so forth, the successive sums of all higher powers are derived from the
lower ones; but the same is achieved a lot easier as follows.

§109 Since we found above that

S
dy
dx

= y +
1
2

S
ddy
dx2 − 1

6
S

d3y
dx3 +

1
24

S
d4y
dx4 − 1

120
S

d5y
dx5 + etc.

if we put dy
dx = z, it will be ddy

dx2 = dz
dx , d3y

dx3 = ddz
dx2 etc. But then, because of

dy = zdx, y will be the quantity whose differential is = zdx which we denote
by y =

∫
zdx. Although this way to find y from given z depends on integral

calculus, we will nevertheless be able to use this formula
∫

zdx here, if we
substitute only functions of x of such a kind for z that this function whose
differential is = zdx can be exhibited from the preceding ones. Therefore,
having substituted these values, it will be

Sz =
∫

zdx +
1
2

S
dz
dx

− 1
6

S
ddz
dx2 +

1
24

S
d3z
dx3 − etc.,

adding such a constant that for x = 0 the sum Sz also vanishes.
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§110 But by substituting the letter z for y in the above expression or, which
is the same, by differentiating this equation it will be

S
dz
dx

= z +
1
2

S
ddz
dx2 − 1

6
S

d3z
dx3 +

1
24

S
d4z
dx4 − etc.;

but if one writes dz
dx instead of y, it will be

S
ddz
dx2 =

dz
dx

+
1
2

S
d3z
dx3 − 1

6
S

d4z
dx4 +

1
24

S
d5z
dx5 − etc.

But if in like manner one successively substitutes the values ddz
dx2 , d3z

dx3 etc. for y,
one will find

S
d3z
dx3 =

ddz
dx2 +

1
2

S
d4z
dx4 − 1

6
S

d5z
dx5 +

1
24

S
d6z
dx6 − etc.

S
d4z
dx4 =

d3z
dx3 +

1
2

S
d5z
dx5 − 1

6
S

d6z
dx6 +

1
24

S
d7z
dx7 − etc.

and so forth to infinity.

§111 If now these values are successively substituted for S dz
dx , S ddz

dx2 , S d3z
dx3 etc.

in the expression

Sz =
∫

zdx +
1
2

S
dz
dx

− 1
6

S
ddz
dx2 +

1
24

S
d3z
dx3 − etc.,

one will find an expression for Sz consisting of these terms
∫

zdx, z, dz
dx , ddz

dx2 ,
d3z
dx3 etc., whose coefficients are investigated more easily the following way. Put

Sz =
∫

zdx + αz +
βdz
dx

+
γddz
dx2 +

δd3z
dx3 +

εd4z
dx4 + etc.

and for these terms substitute their values they obtain from the preceding
series, from which
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∫
zdx = Sz − 1

2
S

dz
dx

+
1
6

S
ddz
dx2 − 1

24
S

d3z
dx3 +

1
120

S
d4z
dx4 − etc.

αz = + αS
dz
dx

− α

2
S

ddz
dx2 +

α

6
S

d3z
dx3 − α

24
S

d4z
dx4 + etc.

βdz
dx

= + βS
ddz
dx2 − β

2
S

d3z
dx3 +

β

6
S

d4z
dx4 + etc.

γddz
dx2 = + γ S

d3z
dx3 − γ

2
S

d4z
dx4 + etc.

δd3z
dx3 = + δ S

d4z
dx4 + etc.

etc.

Since, having added all these values, they have to produce Sz, the coefficients
α, β, γ, δ etc. will be defined from the following equations

α − 1
2
= 0, β − α

2
+

1
6
= 0, γ − β

2
+

α

6
− 1

24
= 0,

δ − γ

2
+

β

6
− α

24
+

1
120

= 0, ε − δ

2
+

β

24
+

α

120
− 1

720
= 0,

ζ − ε

2
+

δ

6
− γ

24
+

β

120
− α

720
+

1
5040

= 0 etc.

and continuing this way, one will find terms each second of which vanishes.
Therefore, the third, fifth, seventh letter and in general all odd ones will be
= 0 except for the first, which seems to violate the law of continuity. Therefore,
it is even more necessary to prove rigorously that all odd terms except for the
first necessarily vanish.

§113 Since each letter is determined according to a constant law from the
preceding ones, they will constitute a recurring series. To make this explicit,
assume this series

1 + αu + βu2 + γu3 + δu4 + εu5 + ζu6 + etc.,
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whose value we want to put = V, and it is obvious that this recurring series
results from the expansion of this fraction

V =
1

1 − 1
2 u + 1

6 u2 − 1
24 u3 + 1

240 u4 − etc.

And if this fraction can be resolved into a power series in u in another way, it
is necessary that always the same series

V = 1 + αu + βu2 + γu3 + δu4 + εu5 + etc.

results; and this way another law, by which the same values α, β, γ, δ etc. are
determined, will be found.

§114 Since, if e denotes the number, whose hyperbolic logarithm is equal to
1, it will be

e−u = 1 − u +
1
2

u2 − 1
6

u3 +
1
24

u4 − 1
120

u5 + etc.,

it will also be

1 − e−u

u
= 1 − 1

2
u +

1
6

u2 − 1
24

u3 +
1

120
u4 − etc.

and hence

V =
u

1 − e−u .

Now cancel the second term αu = 1
2 u from the series that

V − 1
2

u = 1 + βu2 + γu3 + δu4 + εu5 + ζu6 + etc.;

it will be

V − 1
2

u =
1
2 u(1 + e−u)

1 − e−u .

Multiply the numerator and denominator by e
1
2 u and it will be

V − 1
2

u =
u
(

e
1
2 u + e−

1
2 u
)

(
e

1
2 u − e−

1
2 u
)
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and, having converted the quantities e
1
2 u and e−

1
2 u into series, it will be

V − 1
2

u =
1 + u2

2·4 +
u4

2·4·6·8 +
u6

2·4·6·8·10·12 + etc.

2
(

1
2 +

u2

2·4·6 +
u4

2·4·6·8·10 + etc.
)

or

V − 1
2

u =
1 + u2

2·4 +
u4

2·4·6·8 +
u8

2·4···12 +
u8

2·4···16 + etc.

1 + u2

4·6 +
u4

4·6·8·10 +
u8

4·6···14 +
u8

4·6···18 + etc.

§115 Therefore, because in this fraction the odd powers are completely
missing, its power series will contain no odd powers at all; therefore, because
V − 1

2 u becomes equal to this series

1 + βu2 + γu3 + δu4 + εu5 + ζu6 + etc.,

the coefficients of the odd powers, γ, ε, η, ι etc. will all vanish. And this
is the reason why in the series 1 + αu + βu2 + γu3 + δu4 + etc. each second
terms except for the first are = 0 and the law of continuity is nevertheless not
violated. Therefore, it will be

V = 1 +
1
2

u + βu2 + δu4 + ζu6 + θu8 +κx10 + etc.

and, having determined the letters β, δ, ζ, θ, κ etc. by expansion of the fraction
above, we will obtain the summatory term Sz of the series whose general term
corresponding to the index x is = z expressed this way

Sz =
∫

zdx +
1
2

z +
βdz
dx

+
δd3z
dx3 +

ζd5z
dx5 +

θd7z
dx7 + etc.

§116 Since the series 1+ βu2 + δu4 + ζu6 + θu8 + etc. results from the expan-
sion of this fraction

1 + u2

2·4 +
u4

2·4·6·8 +
u6

2·4·6·8·10·12 + etc.

1 + u2

4·6 +
u4

4·6·8·10 +
u8

4·6·8·10·12·14 + etc.
,

the letters β, δ, ζ, θ etc. will obey the following law

8



β =
1

2 · 4
− 1

4 · 6

γ =
1

2 · 4 · 6 · 8
− β

4 · 6
− 1

4 · 6 · 8 · 10

δ =
1

2 · 4 · 6 · · · 12
− δ

4 · 6
− β

4 · 6 · 8 · 10
− 1

4 · 6 · · · 11

θ =
1

2 · 4 · 6 · · · 16
− ζ

4 · 6
− δ

4 · 6 · 8 · 10
− β

4 · 6 · · · 14
− 1

4 · 6 · · · 18
etc.

But these values are positive and negative alternately.

§117 Therefore, if each second of these letters is assumed to be negative so
that

Sz =
∫

zdx +
1
2

z − βdz
dx

+
δd3z
dx3 − ζd5z

dx5 +
θd7z
dx7 − etc.,

the letters β, δ, ζ, θ can be defined from this fraction

1 − u2

2·4 +
u4

2·4·6·8 −
u6

2·4·6·8·10·12 − etc.

1 − u2

4·6 +
u4

4·6·8·10 −
u8

4·6·8·10·12·14 − etc.
,

by expanding it into the series

1 + βu2 + δu4 + ζu6 + θu8 + etc.;

therefore, it will be

β =
1

4 · 6
− 1

2 · 4

δ =
β

4 · 6
− 1

4 · 6 · 8 · 10
+

1
2 · 4 · 6 · 8

ζ =
δ

4 · 6
− β

4 · 6 · 8 · 10
+

1
4 · 6 · · · 14

− 1
2 · 4 · · · 12

+ etc.;

but now all terms will become negative.
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§118 Therefore, let us put β = −A, δ = −B, ζ = −C etc. such that

Sz =
∫

zdx +
1
2

z +
Adz
dx

− Bd3z
dx3 +

Cd5z
dx5 − Dd7z

dx7 + etc.,

and to define the letters A, B, C, D etc., consider this series

1 − Au2 − Bu4 − Cu6 − Du8 − Eu10 − etc.,

which results from the expansion of this fraction

1 − u2

2·4 +
u4

2·4·6·8 −
u6

2·4···12 +
u8

2·4···16 − etc.

1 − u2

4·6 +
u4

4·6·8·10 −
u6

4·6···10 +
u8

4·6···18 − etc.
,

or consider this series

1
u
− Au − Bu3 − Cu5 − Du7 − Eu9 − etc. = s,

which results from the expansion of this fraction

s =
1 − u2

2·4 +
u4

2·4·6·8 −
u6

2·4···12 + etc.

u − u3

4·6 +
u5

4·6·8·10 −
u7

4·6···14 + etc.
.

But since

cos
1
2

u = 1 − u2

2 · 4
+

u4

2 · 4 · 6 · 8
− u6

2 · 4 · · · 12
+ etc.,

sin
1
2

u =
u
2
− u3

2 · 4 · 6
+

u5

2 · 4 · 6 · 8 · 10
− u7

2 · 4 · · · 14
+ etc.,

it follows that

s =
cos 1

2 u
2 sin 1

2 u
=

1
2

cot
1
2

u.

Therefore, if the cotangent of the arc 1
2 u is converted into a series whose terms

are ascending powers of u, from it one will find the values of the letters A, B,
C, D, E etc.

10



§119 Therefore, since s = 1
2 cot 1

2 u, it will be 1
2 u = arccot 2s and, by dif-

ferentiating this equation, it will be 1
2 du = −2ds

1+4ss or 4ds + du + 4ssdu = 0
or

4ds
du

+ 1 + 4ss = 0.

But since

s =
1
u
− Au − Bu3 − Cu5 − etc.,

it will be

4ds
du

= − 4
uu

− 4A − 3 · 4Bu2 − 5 · 4Cu4 − 7 · 4Du6 − etc.

1 = 1

4ss =
4

uu
− 8A − 8Bu2 − 8Cu4 − 8Du6 − etc.

+ 4A2u2 + 8ABu4 + 8ACu6 + etc.

+ 4BBu6 + etc.

Having set these homogeneous terms equal to zero, it will be

A =
1
12

, B =
A2

5
, C =

2AB
7

, D =
2AC + BB

9
, E =

2AD + 2BD
11

,

F =
2AE + 2BD + CC

13
, G =

2AF + 2BE + 2CD
15

, H =
2AG + 2BF + 2CE + DD

17
,

etc.

From these formulas it now obviously follows that each value is positive.
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§120 But since the denominators of these values become immensely large
and impede the calculation quite a lot, instead of the letters A, B, C, D etc. let
us introduce these new letters

A =
α

1 · 2 · 3
, B =

β

1 · 2 · 3 · 4 · 5
, C =

γ

1 · 2 · 3 · · · 7
,

D =
δ

1 · 2 · 3 · · · 9
, E =

ε

1 · 2 · 3 · · · 11
etc.

And one will find

α =
1
2

, β =
2
3

α2, γ = 2 · 2
3

αβ, δ = 2 · 4
3

αγ +
8 · 7
4 · 5

β2,

ε = 2 · 5
3

αδ+ 2 · 10 · 9 · 8
1 · 2 · · · 5

βγ, ζ = 2 · 12
1 · 2 · 3

αε+ 2
12 · 11 · 10
1 · 2 · · · 5

βδ+
12 · 11 · 10 · 9 · 8

1 · 2 · · · 7
γγ,

η = 2 · 14
1 · 2 · 3

αζ + 2 · 14 · 13 · 12
1 · 2 · · · 5

βε + 2 · 14 · 13 · 12 · 11 · 10
1 · 2 · · · 7

γδ

etc.

§121 But we will apply these formulas more conveniently

α =
1
2

, β =
4
3
· αα

2
, γ =

6
3
· αβ, δ =

8
3
· αγ +

8 · 7 · 6
3 · 4 · 5

· ββ

2
,

ε =
10
3
· αδ+

10 · 9 · 8
3 · 4 · 5

· βγ, ζ =
12
3
· αε+

12 · 11 · 10
3 · 4 · 5

· βδ+
12 · 11 · 10 · 9 · 8

3 · 4 · 5 · 6 · 7
· γγ

2
,

η =
14
3

· αζ +
14 · 13 · 12

3 · 4 · 5
· βε +

14 · 13 · 12 · 11 · 10
3 · 4 · 5 · 6 · 7

· γδ,

θ =
16
3

· αη +
16 · 15 · 14

3 · 4 · 5
· βζ +

16 · 15 · · · 12
3 · 4 · · · 7

γε +
16 · 15 · · · 10

3 · 4 · · · 9
· δδ

2
etc.

Using this law, which simplifies the calculation a lot, if the values of the letters
α, β, γ, δ etc. were found, then the summatory term of any arbitrary series
whose general term or the term corresponding to the index x was = z, will be
expressed as follows

Sz =
∫

zdx +
1
2

z +
αdz

1 · 2 · 3 · dx
− βd3z

1 · 2 · 3 · 4 · 5dx5 +
γd5z

1 · 2 · · · 7dx5
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− δd7z
1 · 2 · · · 9dx7 +

εd9z
1 · 2 · · · 11dx9 − ζd11z

1 · 2 · · · 13dx11 + etc.

But these letters α, β, γ, δ etc. were found to have the following values:

α =
1
2

or 1 · 2α = 1

β =
1
6

1 · 2 · 3β = 1

γ =
1
6

1 · 2 · 3 · 4γ = 4

δ =
3

10
1 · 2 · 3 · · · 5δ = 36

ε =
5
6

1 · 2 · 3 · · · 6ε = 600

ζ =
691
210

1 · 2 · 3 · · · 7ζ = 24 · 691

η =
35
2

1 · 2 · 3 · · · 8η = 20160 · 35

θ =
3617

30
1 · 2 · 3 · · · 9θ = 12096 · 3617

ι =
43867

42
1 · 2 · 3 · · · 10ι = 86400 · 43867

κ =
1222277

110
1 · 2 · 3 · · · 11κ = 362880 · 1222277

λ =
854513

6
1 · 2 · 3 · · · 12λ = 79833600 · 854513

µ =
1181820455

546
1 · 2 · 3 · · · 13µ = 11404800 · 1181820455

ν =
76977927

2
1 · 2 · 3 · · · 14ν = 43589145600 · 76977927

ξ =
23749461029

30
1 · 2 · 3 · · · 15ξ = 43589145600 · 23749461029

π =
8615841276005

462
1 · 2 · 3 · · · 16π = 45287424000 · 8615841276005

§122 These numbers have the greatest use throughout the whole doctrine of
series. For, first using these numbers one can form the last terms in the sums
of the even powers, on which we remarked above [§ 63 of the first part] that
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they cannot be found in the same way as the remaining terms from the sums
of the preceding power. For, in the even powers the last terms containing x of
the sums are multiplied by certain numbers which numbers for the powers
II, IV, VI, VII etc. are 1

6 , 1
30 , 1

42 , 1
30 etc. affected with alternating signs. But

these numbers result, if the values of the letters α, β, γ, δ etc. found above are
respectively divided by the odd numbers 3, 5, 7, 9 etc. whence these numbers,
which are usually called Bernoulli numbers after its discoverer Jacob Bernoulli,
will be

α

3
=

1
6

= A,
ι

19
=

43867
798

= I

β

5
=

1
30

= B,
κ
21

=
174611

330
= K =

283 · 617
330

γ

7
=

1
42

= C,
λ

21
=

854513
138

= L =
11 · 131 · 593

2 · 3 · 23

α

9
=

1
30

= D,
µ

25
=

236364091
2730

= M

ε

11
=

5
66

= E,
ν

27
=

8553103
6

= N =
13 · 657931

6

ζ

13
=

691
2730

= F,
ξ

27
=

23749461029
870

= D

η

15
=

7
6

= G,
π

31
=

8615841276005
14322

= P

θ

17
=

3617
510

= H, etc.

§123 Therefore, one will be able to find these Bernoulli numbers A, B, C etc.
immediately from the following equations
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A =
1
6

B =
4 · 3
1 · 2

· 1
5
A2

C =
6 · 5
1 · 2

· 2
7
AB

D =
8 · 7
1 · 2

· 2
9
AC +

8 · 7 · 6 · 5
1 · 2 · 3 · 4

· 1
9
B2

E =
10 · 9
1 · 2

· 2
11

AD+
12 · 11 · 10 · 9

1 · 2 · 3 · 4
· 2

13
BD+

12 · 11 · 10 · 9 · 8 · 7
1 · 2 · 3 · 4 · 5 · 6

· 1
13

C2

G =
14 · 13
1 · 2

· 2
15

AF +
14 · 13 · 12 · 11

1 · 2 · 3 · 4
· 2

15
BE +

14 · 13 · 12 · 12 · 11 · 9
1 · 2 · 3 · 4 · 5 · 6

· 2
15

CD

etc.,

the structure of which equations is clear per se, if one only notes, that where
the square of a certain letter occurs, its coefficient is half as small as it seems
to have to be according to the rule. But, the terms containing the products of
different letters are to be considered to occur twice; for example it will be

13F =
12 · 11

1 · 2
AE+

12 · 11 · 10 · 9
1 · 2 · 3 · 4

BD+
12 · 11 · 10 · 9 · 8 · 7

1 · 2 · 3 · 4 · 5 · 6
CC

+
12 · 11 · 10 · · · 5

1 · 2 · 3 · · · 8
DB+

12 · 11 · 10 · · · 3
1 · 2 · 3 · · · 10

EA.

§124 Further, the same numbers α, β, γ, δ etc. enter the expressions of the
sums of the series of fractions contained in this general form

1 +
1
2n +

1
3n +

1
4n +

1
5n +

1
6n + etc.,

if n is a positive even number. For, we gave these sums expressed in terms
of the half of the circumference of the circle π whose radius is = 1 in the
Introductio and these numbers α, β, γ, δ etc. are detected to enter the coefficients
of these powers. But to understand that this does not happen accidentally but
has to happen, let us investigate the same sums in a special way so that the
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structure of those sums will become clear more easily. Since we found above
(§ 43) that

π

n
cot

m
n

π =
1
m

− 1
n − m

+
1

n + m
− 1

2n − m
+

1
2n + m

− 1
3n − m

+ etc.,

combining each two terms, we will have

π

n
cot

m
n

π =
1
m

− 2m
nn − m2 − 2m

4n2 − m2 − 2m
9n2 − m2 − 2m

16n2 − m2 − etc.,

whence we conclude

1
n2 − m2 +

1
4n2 − m2 +

1
9n2 − m2 +

1
16n2 − m2 + etc. =

1
2mm

− π

2mn
cot

m
n

π.

Now, let us set n = 1 and for m let us put u that

1
1 − u2 +

1
4 − u2 +

1
9 − u2 +

1
16 − u2 + etc. =

1
2uu

− π

2u
cot πu.

Resolve each of these fractions into series:

1
1 − u2 = 1 + u2 + u4 + u6 + u8 + etc.

1
4 − u2 =

1
22 +

u2

24 +
u4

26 +
u6

28 +
u8

28 + etc.

1
9 − u2 =

1
32 +

u2

34 +
u4

36 +
u6

38 +
u8

310 + etc.

1
16 − u2 =

1
42 +

u2

44 +
u6

48 +
u8

410 + etc.

etc.

§125 Therefore, if one puts
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1 +
1
22 +

1
32 +

1
42 + etc. = a 1 +

1
28 +

1
38 +

1
48+etc.= b

1 +
1
24 +

1
34 +

1
44 + etc. = c 1+

1
210+

1
310+

1
410+etc.= d

1 +
1
26 +

1
36 +

1
46 + etc. = c 1+

1
212+

1
312+

1
412+etc. = f

etc.

the above series will be transformed into this one

a+ bu2 + cu4 + du6 + eu8 + fu10 + etc. =
1

2uu
− π

2u
cot πu.

Therefore, because in § 118 the letters A, B, C, D etc. were found to be of such
a nature that, having put

s =
1
u
− Au − Bu3 − Cu5 − Du7 − Eu9 − etc.,

s = 1
2 cot 1

2 u, having written πu instead of 1
2 u or 2πu instead of u, it will be

1
2

cot πu =
1

2πu
− 2Aπu − 23Bπ3u3 − 25Cπ5u5 − 27Dπ7u7 − etc.,

whence, by multiplying by π
u , it will be

π

2u
cot πu =

1
2uu

− 2Aπ2 − 23Bπ4u2 − 25Cπ6u4 − 27Dπ8u6 − etc.,

and hence it follows that

1
2uu

− π

2u
cot πu = 2Aπ2 + 23Bπ4u2 + 25Cπ6u4 + 27Dπ8u6 + etc.

Since we just found that

1
2uu

− π

2u
cot πu = a+ bu2 + cu4 + du6 + etc.,

it is necessary that

17



a = 2 Aπ2 =
2α

1 · 2 · 3
π2 =

2A
1 · 2

π2

b = 23 Aπ4 =
23β

1 · 2 · 3 · 4 · 5
π4 =

23B

1 · 2 · 3 · 4
π4

c = 25 Aπ6 =
25γ

1 · 2 · 3 · · · 7
π6 =

23C

1 · 2 · 3 · · · 6
π6

d = 27 Aπ8 =
27δ

1 · 2 · 3 · · · 9
π8 =

25D

1 · 2 · 3 · · · 8
π8

e = 29 Eπ10 =
29ε

1 · 2 · 3 · · · 11
π10 =

29E

1 · 2 · 3 · · · 10
π10

f = 211Fπ12 =
211ζ

1 · 2 · 3 · · · 13
π12 =

211F

1 · 2 · 3 · · · 12
π12

etc.

§126 Therefore, by this simple reasoning not only all series of reciprocal
powers we exhibited in the preceding paragraph are conveniently summed,
but at the same time it is also understood how these sums are formed from
the known values of the letters α, β, γ, δ, ε etc. or even from the Bernoulli
numbers A, B, C, D etc. Therefore, since we defined fifteen of these numbers
in § 122, from these one will be able to assign the sums of all even [reciprocal]
powers up to the sum of this series:

1 +
1

230 +
1

330 +
1

430 +
1

530 + etc.;

for, the sum of this series will be

=
229π

1 · 2 · 3 · · · 31
π31 =

229P

1 · 2 · · · 30
π30.

And if one wants to determine more of these letters, this is very easily done
by continuing these numbers α, β, γ etc. or these A, B, C etc.

§127 Therefore, the origin of these numbers α, β, γ, δ etc. or those formed
from them A, B, C, D etc. is basically the expansion of the cotangent of a
certain angle into an infinite series. For, if
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1
2

cot
1
2

u =
1
u
− Au − Bu3 − Cu5 − Du7 − Eu9 − etc.,

it will be

Au2 + Bu4 + Cu6 + Du8 + etc. = 1 − u
2

cot
1
2

u;

therefore, if the respective values of the letters are substituted for coefficients
A, B, C, D etc., it will be found

αu2

1 · 2 · 3
+

βu4

1 · 2 · · · 5
+

γu7

1 · 2 · · · 7
+

δu8

1 · 2 · · · 9
+ etc. = 1 − u

2
cot

1
2

u

and by using the Bernoulli numbers it will be

Au2

1 · 2
+

Bu4

1 · 2 · 3 · 4
+

Cu6

1 · 2 · · · 6
+

Du8

1 · 2 · · · 8
+ etc. = 1 − u

2
cot

1
2

u,

from which series by differentiation innumerable others can be deduced and
infinite series these numbers enter can be summed.

§128 Let us take the first equation which we want to multiply by u so that

αu3

1 · 2 · 3
+

βu5

1 · 2 · · · 5
+

γu7

1 · 2 · · · 7
+

δu9

1 · 2 · · · 9
+ etc. = u − uu

2
cot

1
2

u,

which differentiated and divided by du gives

αu2

1 · 2
+

βu4

1 · 2 · 3 · 4
+

γu6

1 · 2 · · · 6
+

δu8

1 · 2 · · · 8
+ etc. = 1 − u cot

1
2

u +
uu

4(sin 1
2 u)2

;

and if it is differentiated again, it will be

αu
1

+
βu3

1 · 2 · 3
+

γu5

1 · 2 · 3 · 4 · 5
+ etc. = − cot

1
2

u +
u

(sin 1
2 u)2

−
uu cos 1

2 u
4(sin 1

2 u)2
.

But if the other equation is differentiated, it will be

Au
1

+
Bu3

1 · 2 · 3
+

Cu5

1 · 2 · · · 5
+

Du7

1 · 2 · · · 7
+ etc. = −1

2
cot

1
2

u +
u

4(sin 1
2 u)2

.
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From these, if one puts u = π, because of cot 1
2 π = 0 and sin 1

2 π = 1, these
summations follow

1 =
απ2

1 · 2 · 3
+

βπ4

1 · 2 · 3 · 4 · 5
+

γπ6

1 · 2 · 3 · · · 7
+

δπ8

1 · 2 · 3 · · · 9
+ etc.

1 +
π2

4
=

απ2

1 · 2
+

βπ4

1 · 2 · 3 · 4
+

γπ6

1 · 2 · 3 · · · 6
+

δπ8

1 · 2 · 3 · · · 8
+ etc.

π =
απ

1
+

βπ3

1 · 2 · 3
+

γπ5

1 · 2 · 3 · 4 · 5
+

δπ7

1 · 2 · 3 · · · 7
+ etc.

or

1 = α +
βπ2

1 · 2 · 3
+

γπ4

1 · 2 · 3 · 4 · 5
+

δπ6

1 · 2 · 3 · · · 7
+ etc.;

if the first is subtracted from this one, it will remain

α =
(α − β)π2

1 · 2 · 3
+

(β − γ)π4

1 · 2 · 3 · 4 · 5
+

(α − γ)π6

1 · 2 · 3 · · · 7
+ etc.

But then it will be

1 =
Aπ2

1 · 2
+

Bπ4

1 · 2 · 3 · 4
+

Cπ6

1 · 2 · 3 · · · 6
+

Dπ8

1 · 2 · 3 · · · 8

π

4
=

Aπ

1
+

Bπ3

1 · 2 · 3
+

Cπ5

1 · 2 · 3 · 4 · 5
+

Dπ7

1 · 2 · 3 · · · 7

or

1
4

=
A

1
+

Bπ2

1 · 2 · 3
+

Cπ4

1 · 2 · 3 · 4 · 5
+

Dπ6

1 · 2 · 3 · · · 7
+ etc.

§129 From the table of values of the numbers α, β, γ, δ etc. we exhibited
above (§ 121) it is plain that they decrease at first, but then increase and do so
to infinity. Therefore, it will be worth one’s while to investigate, how these
numbers grow, after they had already been continued very far. Therefore, let
ϕ be any number of this series of the numbers α, β, γ, δ etc. removed very
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far from the beginning and let ψ be the following number. Since the sum
of the reciprocal powers are defined by means of these numbers, let 2n be
the exponent of the power, whose sum the number ϕ enters; 2n + 2 will be
the exponent corresponding to number ψ and the number n will already be
immensely large. Hence, from § 125 one will have

1 +
1

22n +
1

32n +
1

42n + etc. =
22n−1ϕ

1 · 2 · 3 · · · (2n + 1)
π2n,

1 +
1

22n+2 +
1

32n+2 +
1

42n+2 + etc. =
22n+1ϕ

1 · 2 · 3 · · · (2n + 3)
π2n+2.

Therefore, if these numbers are divided by each other, it will be

1 + 1
22n+2 +

1
32n+2 + etc.

1 + 1
22n +

1
32n + etc.

=
4ψπ2

(2n + 2)(2n + 3)ϕ
.

but since n is an immensely large number and since both series are very close
to 1, it will be

ψ

ϕ
=

(2n + 2)(2n + 3)
4π2 =

nn
ππ

.

Therefore, because n denotes, how far away the number ϕ was from the first
number α, that number ϕ will have almost the same ratio to the following
ψ as π2 has to to n2 which ratio will be exact, if n was an infinite number.
Since it is almost ππ = 10, if one puts n = 100, the hundredth term will be
thousand times smaller than its following term. Therefore, the numbers α, β,
γ, δ etc. as the Bernoulli numbers A, B, C, D etc. constitute a highly divergent
series which grows even faster than a geometric series whose terms increase.

§130 Therefore, having found the values of the numbers α, β, γ, δ etc. or A,
B, C, D etc., if a series is propounded whose general term z was an arbitrary
function of the index x, the summatory term Sz of this series will be expressed
as follows

Sz =
∫

zdx +
1
2

z +
1
6
· dz

1 · 2
− 1

30
· d3z

1 · 2 · 3 · 4dx3

+
1

42
· d5

1 · 2 · 3 · · · 6dx5 − 1
30

· d7z
1 · 2 · 3 · · · 8dx7
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+
5

66
· d9z

1 · 2 · 3 · 10dx9 − 691
2730

· d11z
1 · 2 · 3 · · · 12dx11

+
7
6
· d13z

1 · 2 · 3 · · · 14dx13 − 3617
510

· d15z
1 · 2 · 3 · · · 16dx16

854513
138

· d21z
1 · 2 · 3 · · · 22dx21 − 236364091

2730
· d23z

1 · 2 · 3 · · · 24dx23

+
8553103

6
· d25z

1 · 2 · 3 · · · 26dx25 − 23749461029
870

· d27z
1 · 2 · 3 · · · 28dx27

+
8615841276005

14322
· d29z

1 · 2 · 3 · · · 30dx29 − etc.

Therefore, if the integral
∫

zdx or the quantity whose differential is = zdx is
known, the summatory term will be found by means of iterated differentiation.
But it is to be noted that always a constant of such a kind is to be added to
this expression that the sum becomes = 0, if the index x is put = 0.

§131 Therefore, if z was a polynomial function of x, since its higher order
differentials vanish eventually, the summatory terms will be expressed by a
finite expression; we will illustrate this in the following examples.

EXAMPLE 1

Let the summatory term of this series be in question

1 2 3 4 5 x

1 + 9 + 25 + 49 + 81 + · · · + (2x − 1)2.

Since here it is z = (2x − 1)2 = 4xx − 4x + 1, it will be∫
zdx =

4
3

x3 − 2x2 + x;

for, from the differentiation of this series the equation 4xxdx − 4xdx + dx =
zdx results. Furthermore, by differentiation it will be

dz
dx

= 8x − 4,
ddz
dx2 = 8,

d3z
dx3 = 0 etc.

Hence the summatory term in question will be
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4
3

x3 − 2x2 + x + 2xx − 2x +
1
2
+

2
3

x ± Const.,

which constant has to cancel the terms 1
2 −

1
3 ; therefore, it will be

S(2x − 1)2 =
4
3

x3 − 1
3

x =
x
3
(2x − 1)(2x + 1).

So, for x = 4 the sum of the first four terms will be

1 + 9 + 25 + 49 =
4
3
· 7 · 9 = 84.

EXAMPLE 2

Let the summatory term of this series be in question

1 2 3 4 x

1 + 27 + 125 + 343 + · · · + (2x − 1)3.

Since z = (2x − 1)3 = 8x3 − 12x2 + 6x − 1, it will be

dz
dx

= 24x2 − 24x + 6,
ddz
dx2 = 48x − 24,

d3z
dx3 = 48;

the following differential quotients all vanish. Therefore, it will be

S(2x − 1)3 = 2x4 − 4x3 + 3x3 − 1x

+ 4x3 − 6x2 + 3x − 1
2

+ 2x2 − 2x +
1
2

− 1
15

± Const.,

i.e.

S(2x − 1)3 = 2x4 − x2 = x2(2xx − 1).

So, having put x = 4, it will be

1 + 27 + 125 + 343 = 16 · 31 = 496.
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§132 From this general expression found for the summatory term immedia-
tely that summatory term we gave in the above part [§ 29 and 61] for the
powers of the natural numbers and whose demonstration could not be given
at that point follows. For, if we put z = xn, it will be

∫
zdx = 1

n+1 xn+1; the
differentials on the other hand will be

dz
dx

= nxn−1,
ddz
dx2 = n(n − 1)xn−2,

d3z
dx3 = n(n − 1)(n − 2)xn−3,

d5z
dx5 = n(n− 1)(n− 2)(n− 3)(n− 4)xn−5,

d7z
dx7 = n(n− 1) · · · (n− 6)xn−7 etc.

From these therefore the following summatory term corresponding to the
general term xn will be deduced
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Sxn =
1

n + 1
xn+1 +

1
2

xn +
1
6
· n

2
xn−1 − 1

30
· n(n − 1)(n − 2)

2 · 3 · 4
xn−3

+
1
42

· n(n − 1)(n − 2)(n − 3)(n − 4)
2 · 3 · 4 · 5 · 6

xn−5

− 1
30

· n(n − 1) · · · · · · · · · · · · · (n − 6)
2 · 3 · · · 8

xn−7

+
5
66

· n(n − 1) · · · · · · · · · · · · · (n − 8)
2 · 3 · · · 10

xn−9

− 691
2730

· n(n − 1) · · · · · · · · · · · · (n − 10)
2 · 3 · · · 12

xn−11

+
7
6
· n(n − 1) · · · · · · · · · · · · (n − 12)

2 · 3 · · · 14
xn−13

−3617
510

· n(n − 1) · · · · · · · · · · · · (n − 14)
2 · 3 · · · 16

xn−13

+
43867
798

· n(n − 1) · · · · · · · · · · · · (n − 16)
2 · 3 · · · 18

xn−17

−174611
330

· n(n − 1) · · · · · · · · · · · · (n − 18)
2 · 3 · · · 20

xn−19

+
854513

138
· n(n − 1) · · · · · · · · · · · · (n − 20)

2 · 3 · · · 22
xn−21

−236364091
2730

· n(n − 1) · · · · · · · · · · · · (n − 22)
2 · 3 · · · 24

xn−23

+
8553103

6
· n(n − 1) · · · · · · · · · · · · (n − 24)

2 · 3 · · · 26
xn−25

−23749461029
870

· n(n − 1) · · · · · · · · · · · · (n − 26)
2 · 3 · · · 28

xn−27

+
8615841276005

14322
· n(n − 1) · · · · · · · · · · · · (n − 28)

2 · 3 · · · 30
xn−29

etc.;
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this expression does not differ from the one we gave above except for the fact
that here we introduced the Bernoulli numbers A, B, C etc., whereas above we
used the numbers α, β, γ, δ etc.; nevertheless, the agreement is immediately
clear. Therefore, it is possible to exhibit the summatory term of all series up
to the sums of the thirtieth powers; this investigation, if it would been done in
another way, would have required very long and most tedious calculations.

§133 Above (§ 59) we already gave an almost identical expression to define
the summatory term from the general term. But that expressions used the
iterated differences of the general term; therefore, it differs from the expression
we gave here mainly in that regard that it does not require the integral

∫
zdx,

but each difference of the general term is multiplied by certain functions of x.
Therefore, let us find the same expression again in the following way more
accommodated to the nature of series, from which at the same time the rule
how the coefficients of the differentials proceed will be seen. Therefore, let the
general term of the series be z, a function of the index x; the summatory term
in question the other hand shall be = s; since this term, as we saw above, will
be a function of x vanishing for x = 0, applying the results we demonstrated
above [§ 68] on the nature of functions of this kind it will be

s − xds
1dx

+
x2dds

1 · 2dx2 − x3d3s
1 · 2 · 3dx3 +

x4d4s
1 · 2 · 3 · 4dx4 − etc. = 0.

§134 Since s denotes the sum of all terms of the series from the first to the
last z, it is perspicuous, if in s one writes x − 1 instead of x, that the first sum
does not contain the last term z; it will be

s − z = s − ds
dx

+
dds

2dx2 − d3s
6dx3 +

d4s
24dx4 − etc.

and hence

z =
ds
dx

− dds
2dx2 +

d3s
6dx3 − d4s

24dx4 + etc.,

which equation provides a way to define the general term from the given sum-
matory term what is per se very easy. But from an appropriate combination
of this equation with that we found in the preceding paragraph, one will be
able to define the value of s in terms of x and z. For this aim, let us put
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s − Az +
Bdz
dx

− Cddz
dx2 +

Ddz3

dx3 − Ed4z
dx4 + etc. = 0,

where A, B, C, D etc. denote the necessary coefficients, either constant or
variable; for, since

z =
ds
dx

− dds
2dx2 +

d3s
6dx3 − d4s

24dx4 +
d5s

120dx5 − etc.,

if the values for z, dz
dx , ddz

dx2 , d3z
dx3 etc. are substituted in the above equation, it will

result

+ s = s

− Az = −Ads
dx

+ Adds
2dx2 − Ad3s

6dx3 +
Ad4s
24dx4 − Ad5s

120dx5 + etc.

+
Bdz
dx

= +
Bdds
dx2 − Bd3s

2dx3 +
Bd4s
6dx4 − Bd5s

24dx5 + etc.

− Cddz
dx2 = − Cd3s

dx3 +
Cd4s
2dx4 − Cd5s

6dx5 + etc.

+
Dd3z
dx3 = +

Dd4s
dx4 − Dd5s

2dx5 + etc.

− Ed4z
dx4 = − Ed5s

dx5 + etc.

etc.

which series all added up therefore will be equal zero.

§135 Therefore, since we found before that

0 = s − xds
dx

+
x2dds
2dx2 − x3d3s

6dx3 +
x4d4s
24dx4 − x5d5s

120dx5 + etc.,

if the above equation is put equal to this one, the following defining equations
of the letters A, B, C, D etc. will result
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A = x, B =
x2

2
− A

2
, C =

x3

6
− B

2
− A

6
,

D =
x4

24
− C

2
− B

6
− A

24
, E =

x
120

− D
2
− C

6
− B

24
− A

120
etc..

Therefore, having found the values of the letters A, B, C, D etc., from the
general term z the summatory term s = Sz will be determined in such a way
that

Sz = Az − Bdz
dx

+
Cddz
dx2 − Dd3z

dx3 +
Ed4z
dx4 − Fd5z

dx5 + etc.

§136 But since

A = x, B =
1
2

x2 − 1
2

x, C =
1
6

x3 − 1
4

x2 +
1

12
x,

D =
1
24

x4 − 1
12

x3 +
1
24

xx etc.,

it is clear that these coefficients are the same as those we had above (§ 59);
hence that expression of the summatory term is the same as the one we found
there and therefore it will be

A = Sx0 = S1, B =
1
1

Sx1 − 1
1

x, C =
1
2

Sx2 − 1
2

x2,

D =
1
6

Sx3 − 1
6

x3, E =
1
24

Sx4 − 1
24

x4 etc.

Therefore, it will be

Sz = xz − dz
dx

Sx +
ddz
2dx2 Sx2 − d3z

6dx3 Sx3 +
d4z

24dx4 Sx4 − etc.

+
xdz
dx

− x2ddz
2dx2 +

x3d3z
6dx3 − x4d4z

24dx4 + etc.

But if x = 0 in the general term z, the term corresponding to the index = 0
will result; if it is put = a, it will be

a = z − xdz
dx

+
x2ddz
2dx2 − x3d3z

6dx3 + etc.

and hence
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xdz
dx

− x2ddz
2dx2 +

x3d3z
6dx3 − x4d4z

24dx4 + etc. = z − a,

having substituted which value one will have

Sz = (x + 1)z − a − dz
dx

Sx +
ddz
2dx2 Sx2 − d3z

6dx3 +
d4z

24dx4 Sx4 − etc.

Therefore, having found the sums of the powers from a certain given general
term, one can exhibit the summatory term corresponding to it.

§137 Therefore, since we found two expressions of the summatory term Sz
for the general term z and one of the formulas contains the integral

∫
zdx, if

these two expressions are equated, one will obtain the value of
∫

zdx expressed
by means of a series. For, since∫

zdx = +
1
2

z +
Adz

1 · 2dx
− Bd3z

1 · 2 · 3 · 4dx3 +
Cd5z

1 · 2 · · · 6dx5 − etc.

= (x + 1)z − a − dz
1dx

Sx +
ddz

1 · 2dx2 Sx2 − d3z
1 · 2 · 3

Sx3 + etc.,

it will be

∫
zdx =

(
x +

1
2

)
z − a − dz

dx

(
Sx +

1
2
A

)
+

ddz
2dx2 Sx2 − d3z

6dx3

(
Sx3 − 1

4
B

)

+
d4z

24dx4 Sx4 − d5z
120dx5

(
Sx5 +

1
6
C

)
+

d6z
720dx6 Sx6 − d7z

5040dx7

(
Sx7 − 1

8
D

)
+ etc.,

where A, B, C, D etc. denote the Bernoulli numbers exhibited above (§ 122).

For the sake of an example, let z = xx; it will be a = 0, dz
dx = 2x and ddz

2dx2 = 1;
it will hence be

∫
xxdx =

(
x +

1
2

)
xx − 2x

(
1
2

xx +
1
2

x +
1
12

)
+ 1

(
1
3

x3 +
1
2

x2 +
1
6

x
)

or
∫

xxdx = 1
3 x3; but 1

3 x3, having differentiated it, gives xxdx, of course.
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§138 Therefore, there is a new way to find the summatory terms of the series
of powers; for, since from the coefficients A, B, C, D etc. assumed before these
summatory terms are formed very easily, but each of these coefficients is
conflated of the preceding ones, if the values given in § 136 are substituted for
these letters in the formulas given in § 135, it will be

Sx1 − x =
1
2

xx − 1
2

x

Sx2 − x2 =
1
3

x3 − 1
3

− 2
2
(Sx − x)

Sx3 − x3 =
1
4

x4 − 1
4

x − 3
2
(Sx2 − x2)− 3 · 2

2 · 3
(Sx − x)

Sx4 − x4 =
1
5

x5 − 1
5

x − 4
2
(Sx3 − x3)− 4 · 3

2 · 3
(Sx2 − x2)− 4 · 3 · 2

2 · 3 · 4
(Sx − x)

etc.

Therefore, one will be able to form the sums of the above powers from the
sums of the lower ones.

§139 But if we consider the law, which the coefficients A, B, C, D etc. above
(§ 135) were found to follow, with more attention, we will detect that they
constitute a recurring series. For, if we expand this fraction

y =
x+ 1

2 xxu+ 1
6 x3u2+ 1

24 x4u3+ 1
120 x5u4+etc.

1+ 1
2 u + 1

6 u2 + 1
24 u3 + 1

120 u4 +etc.

into a power series in u and assume this series to result

A + Bu + Cu2 + Du3 + Eu4 + etc.,

it will be, as we found before,

A = x, B =
1
2

xx − 1
2

A etc.

and so having found this series one will obtain the summatory terms of the
series of powers. But that fraction, from whose expansion this series results,
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will go over into this form exu−1
eu−1 which, if x was a positive integer, goes over

into

1 + eu + e2u + e3u + · · ·+ e(x−1)u;

therefore, since

1 = 1

eu = 1 +
u
1

+
u2

1 · 2
+

u3

1 · 2 · 3
+

u4

1 · 2 · 3 · 4
+ etc.

e2u = 1 +
2u
1

+
4u2

1 · 2
+

8u3

1 · 2 · 3
+

16u4

1 · 2 · 3 · 4
+ etc.

e3u = 1 +
3u
1

+
9u2

1 · 2
+

27u3

1 · 2 · 3
+

81u4

1 · 2 · 3 · 4
+ etc.

e(x−1)u = 1 +
(x − 1)u

1
+

(x − 1)2u2

1 · 2
+

(x − 1)3u3

1 · 2 · 3
+

(x − 1)4u4

1 · 2 · 3 · 4
+ etc.

it will be

A = x

B = S(x − 1) = Sx − x

C =
1
2

S(x − 1)2 =
1
2

Sx2 − 1
2

x2

D =
1
6

S(x − 1)3 =
1
6

Sx3 − 1
6

x3

etc.

Therefore, the connection already mentioned before of these coefficients to the
sums of the powers is confirmed and demonstrated completely.
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